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Combined Radar-Radiometer Algorithm Input
•  Dual-Frequency Precipitation Radar (DPR); Ku & Ka bands
•  GPM Microwave Imager (GMI); 10 – 183 GHz.
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Algorithm “Concept”  --- Ensemble Filter
Input Ensemble Solution

Z

alt.
observed Ku 
reflectivity
profile

assumed random
water vapor,
cloud water, 
µ, Nw profiles

precip.
water
content
profilesinvert DM

profiles

assumed random
surface emissivity

simulated
Ka reflectivity
profiles,
Ku/Ka PIA’s

simulator

simulated
TB’s

Ensemble
Filter

filtered 
precip.
water
content
profiles

uses	covariances
of	water	contents	
and	simulated
observations

observed Ka
reflectivity profile, 
Ku/Ka PIA’s, and 
TB’s from GMI

Z

alt.

solution
profile

(mean)

s



Algorithm “Concept”  --- Nonuniform Beamfilling
Input Ensemble Solution
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What we added with V04:

•  GMI radiances were resolution-enhanced using 
regression-based filters; using all GMI channels.

•  Hogan & Battaglia model for multiple-scattering in radar 
simulations was utilized where needed.

(note: V04 described in Grecu et al. 2016 JAOT article)



Comparison of GPM Mean Precip. vs. GPCP
and MRMS  Sep. – Aug. 2014/2015
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Combined Algorithm V5 Updates and TRMM V8

•  Changed initial assumptions on PSD’s and 
ensemble generation.

Revised modeling of path-integrated attenuation in 
response to non-uniform beamfilling effects.

In process:

•  Nonspherical ice particle scattering tables.

•  s0 – emissivity surface parameterization.

•  Have begun interfacing Combined with TRMM input.



Radar-Based Simulations of Beamfilling-Affected 
Path Integrated Attenuation Mircea Grecu
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• Use high-resolution ground radar to simulate SRT PIA and
attenuated reflectivities over DPR footprint.

• Retrieve PIA’s, assuming uniform beamfilling.



Comparison of GPM Mean Precip. vs. GPCP
and MRMS  Sep. – Aug. 2014/2015
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Comparison of GPM Mean Precip. vs. GPCP
and MRMS  Sep. – Aug. 2014/2015
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Comparison of ITE vs. MRMS 
Sep. - Aug. 2014/2015

Combined ITE Errors vs. MRMSCombined ITE – MRMS
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Comparison of ITE Ku+Ka+GMI and MRMS Rain Rates
at Footprint Resolution
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Comparison of GPM V4 vs. ITE 
Corrected Ku Reflectivity on May 11, 2015
Using “Validation Network” Matched Data
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Final Remarks:

• Combined Algorithm V5 should be ready for
delivery 1 month after final Radar Algorithm     
is delivered.

• In short term, examine relationships between    
PSD/non-uniform beamfilling assumptions and 
attenuation correction.

• Non-uniform beamfilling, multiple scattering, 
ice/mixed-phase particle properties are currently  
parameterized, but comprehensive descriptions 
will require longer-term efforts.

• Will work with radiometer team on high latitude   
estimates.  Generate databases for algorithm.



extras



Combined Radar-Radiometer Algorithm Input
•  Dual-Frequency Precipitation Radar (DPR); Ku & Ka bands
•  GPM Microwave Imager (GMI); 10 – 183 GHz.
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Comparison of ITE Ku+GMI and MRMS Rain Rate 
at Footprint Resolution
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Comparison of GPM V4 vs. ITE 
Sep. - Aug. 2014/2015

Combined ITE - V4Combined V4 - GPCP



Radiometer Database Generation
Simulated vs. Observed TB’s

• brightness temperatures are
simulated using 1 year of 
retrieved profiles from V4 
combined algorithm code.

• ice column is adjusted to get
better agreement with high-
frequency GMI channels 
(uses DDA ice).

• over ocean comparisons at
right.

Sarah Ringerud



Nw Study
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Nw Study
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Comparison of GPM V4 vs. ITE 
Corrected Ku Reflectivity on Sep. 2, 2014
Using VN Matched Data
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Comparison of GPM and MRMS Radar (Q3) 
Sep. - Feb. 2014/2015

Combined ITE – MRMS Combined ITE vs. MRMS
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Non-Uniform Precipitation Beamfilling
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“Downscaling” to Represent Non-Uniform Beamfilling
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Ku and Ka Band Radar
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Observed and Modeled DPR Reflectivities
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Precip. Estimates from Hurricane Edouard

Ku+GMI Rain Rate Ku+Ka+GMI Rain Rate



TB Simulations from Hurricane Edouard
10 GHz 19 GHz 37 GHz 89 GHz
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Algorithm Theoretical Basis
Generalized Hitschfeld-Bordan Method

(applied to Ku-band data only)
• original Hitschfeld-Bordan fast, but reqs.   k  = a Z b .

   

          • iterative techniques typically slow.

• alternative interative procedure, assuming No(r) and approximate    
approximate b from k-Z relation:
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Algorithm Theoretical Basis

Correct DPR ZKu for attenuation 
due to cloud and water vapor.

Set true Z = DPR ZKu .
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Generalized 
Hitschfeld-Bordan
Method
• procedure is fast
because iterative
equation is a close
approx. to H-B solution.

• note procedure
avoids instability by
rescaling No(r), if needed.

• yields Do(r), given No(r),
µ, and ZKu . 



0 oC

Evaluating Snow Physics Using HIWRAP and CoSMIR in MC3E

• Retrieve precip profile
(PSD’s) using HIWRAP. HIWRAP

in	situ

• Compute consistent
microwave scattering
properties in profile.

• Simulate upwelling 
brightness temperatures
at 89, 165.5 GHz.

• Compare to CoSMIR obs.

Note: brightness temps
aren’t sensitive to variations
of surface emission and
liquid precip if light rain is 
present => scattering 
signatures discriminate 
snow particle models.

CoSMIR
TB’s

• Assign scattering model. W. Olson,
K.-S. Kuo,
L. Tian,
M. Grecu,
B. Johnson,
A. Heymsfield,
G. Heymsfield,
J. Munchak

(Ku/Ka)



Radar Retrieval and Simulation of TB’s Using Spherical/Aggregate Ice

Kuo aggregatesr = 0.1 g cm-3 spheres

(Aggregates)

r = 0.1 g cm-3 spheres Kuo aggregates



Comparison of GPM Mean Precip. vs. GPCP
and MRMS  Sep. – Aug. 2014/2015
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Comparison of GPM V4 vs. ITE 
Sep. - Aug. 2014/2015

Combined ITE - V4Combined V4 - GPCP



Issues with V04:

•  estimates over land, particularly in climatologically
convective regions, were overestimated.

•  overestimation was made even greater by 
the DPR calibration change.


